7,555 research outputs found

    HTMLPhish: Enabling Phishing Web Page Detection by Applying Deep Learning Techniques on HTML Analysis

    Get PDF
    Recently, the development and implementation of phishing attacks require little technical skills and costs. This uprising has led to an ever-growing number of phishing attacks on the World Wide Web. Consequently, proactive techniques to fight phishing attacks have become extremely necessary. In this paper, we propose HTMLPhish, a deep learning based datadriven end-to-end automatic phishing web page classification approach. Specifically, HTMLPhish receives the content of the HTML document of a web page and employs Convolutional Neural Networks (CNNs) to learn the semantic dependencies in the textual contents of the HTML. The CNNs learn appropriate feature representations from the HTML document embeddings without extensive manual feature engineering. Furthermore, our proposed approach of the concatenation of the word and character embeddings allows our model to manage new features and ensure easy extrapolation to test data. We conduct comprehensive experiments on a dataset of more than 50,000 HTML documents that provides a distribution of phishing to benign web pages obtainable in the real-world that yields over 93% Accuracy and True Positive Rate. Also, HTMLPhish is a completely language-independent and client-side strategy which can, therefore, conduct web page phishing detection regardless of the textual language

    Multi-fractal analysis of weighted networks

    Full text link
    In many real complex networks, the fractal and self-similarity properties have been found. The fractal dimension is a useful method to describe fractal property of complex networks. Fractal analysis is inadequate if only taking one fractal dimension to study complex networks. In this case, multifractal analysis of complex networks are concerned. However, multifractal dimension of weighted networks are less involved. In this paper, multifractal dimension of weighted networks is proposed based on box-covering algorithm for fractal dimension of weighted networks (BCANw). The proposed method is applied to calculate the fractal dimensions of some real networks. Our numerical results indicate that the proposed method is efficient for analysis fractal property of weighted networks
    • …
    corecore